100年公務人員特種考試一般警察人員考試、

100年公務人員特種考試警察人員考試及代號:71150 全一張

100年特種考試交通事業鐵路人員考試試題

(正面)

等 别:高員三級鐵路人員考試

類 科:機械工程

科 目: 熱工學

考試時間:2小時

座號:

※注意: (一)可以使用電子計算器。

□不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

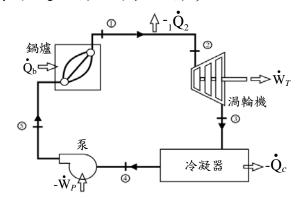
- 一、請簡答下列各小題: (每小題 5 分, 共 30 分)
  - (一)一具密閉型的熱水槽,熱水的內能有 1,000 kJ,用一攪拌器進行降溫,在降溫過程中攪拌器輸入了 500 kJ 的電功,此熱水槽熱水則損失了 300 kJ 能量,則此熱水槽之熱水內能變為何?
  - (二)空氣壓縮機作用在相同的壓力極限下,試說明等溫(Isothermal)壓縮與絕熱 (Adiabatic)壓縮那一個所需的輸入功較小,為什麼?

  - 四某平行流熱交換器利用  $10^{\circ}$ C之冷水將  $90^{\circ}$ C之熱水冷卻,若冷水與熱水之質量流率相同,且冷水側之出口溫度為  $40^{\circ}$ C,則此時熱交換器之對數平均溫度差為幾度?
  - 伍一個引擎在相同壓縮比之下,若分別採用鄂圖循環(Otto Cycle)與迪賽爾循環(Diesel Cycle),試問何者熱效率較高? 為什麼?
  - 內在何種情況下,乾球(Dry-bulb)與露點溫度(Dew-point Temperature)會相等?
- 二、有關理想朗肯循環(Ideal Rankine Cycle),請回答下列各小題:
  - (→)寫出此循環之四個過程的特徵與名稱,並説明其傳熱與作功之特性。(6分)
  - (二)寫出三個提高朗肯循環效率 (Thermal Efficiency) 之方法。 (9分)
  - (三)就回熱(Regeneration)與再熱(Reheat)這兩個常用工程策略,繪製與説明在理想的肯循環之應用簡圖與預期影響。(10分)
- 三、下列設備於高溫熱源  $(T_H)$  及低溫熱源  $(T_L)$  操作,請簡答各題: (每小題 5 分) 共 25 分)
  - (一)卡諾循環(Carnot Cycle)之熱效率與熱源高溫TH及低溫TL之關係為何?
  - 二十諾循環之最高溫度  $(T_H)$  為 927 ℃ 及最低溫度  $(T_L)$  為 27 ℃ ,它的循環熱效率 為何?
  - $(\Xi)$ 逆向卡諾循環之性能係數 (COP) ,與熱源之高溫 $T_H$ 及低溫 $T_L$ 之關係為何?
  - 四某冷凍機在冷庫溫度-15℃和環境溫度 32℃之間完成逆向卡諾循環,已知該冷凍機每小時自冷庫中吸取 2,000 kJ 的熱量,求此冷凍循環之性能係數(COP)。
  - 伍某冷凍工程師建造了一部卡諾熱泵(Heat Pump),此熱泵在-15℃和環境溫度 32℃間操作,則其性能係數 COP 為何?

100年公務人員特種考試一般警察人員考試、

100年公務人員特種考試警察人員考試及代號:71150

100年特種考試交通事業鐵路人員考試試題


全一張 (背面)

等 别:高員三級鐵路人員考試

類 科:機械工程

科 目: 熱工學

四、一個蒸汽動力循環如下圖所示,其各個元件條件與工質之性質列於下表: (每小題 5 分, 共 20 分)



| 區段          | 壓力      | 溫度(或乾度) |  |  |  |  |
|-------------|---------|---------|--|--|--|--|
| 1           | 2.0 MPa | 300℃    |  |  |  |  |
| 2           | 2.0 MPa | 250°C   |  |  |  |  |
| 3           | 15 kPa  | 90%     |  |  |  |  |
| 4           | 14 kPa  | 45℃     |  |  |  |  |
| 泵輸入功=4kJ/kg |         |         |  |  |  |  |

| 祵    | 熱   | 蒎 | 汽   | 妣  | 啠 | 耒  |
|------|-----|---|-----|----|---|----|
| 76.6 | 777 | 杰 | / L | ニエ | 貝 | 1X |

| Press.(kPa) | Temp.(°ℂ)    | v,m3/kg | u,kJ/kg | <i>h</i> ,kJ/kg | s,kJ/kg-K |
|-------------|--------------|---------|---------|-----------------|-----------|
| 2000        | Sat.(212.42) | 0.09963 | 2600.26 | 2799.51         | 6.3408    |
| 2000        | 250          | 0.11144 | 2679.58 | 2902.50         | 6.5452    |
| 2000        | 300          | 0.12547 | 2772.56 | 3023.50         | 6.7663    |

飽和狀態性質表

| Press. | Temp. | Specific volume, m <sup>3</sup> /kg |          | Internal energy, kJ/kg |         | Enthalpy, kJ/kg |         | Entropy, kJ/kg-K |        |
|--------|-------|-------------------------------------|----------|------------------------|---------|-----------------|---------|------------------|--------|
| (kPa)  | (℃)   | $v_f$                               | $v_g$    | $u_f$                  | $u_g$   | $h_f$           | $h_g$   | $S_f$            | $S_g$  |
| 9.593  | 45    | 0.001010                            | 15.2581  | 188.41                 | 2436.81 | 188.50          | 2583.19 | 0.6386           | 8.1647 |
| 10     | 45.81 | 0.001010                            | 14.67355 | 191.79                 | 2437.89 | 191.81          | 2584.63 | 0.6492           | 8.1501 |
| 15     | 53.97 | 0.001014                            | 10.02218 | 225.90                 | 2448.73 | 226.00          | 2599.10 | 0.7548           | 8.0084 |
| 20     | 60.06 | 0.001017                            | 7.64937  | 251.35                 | 2456.71 | 251.38          | 2609.70 | 0.8319           | 7.9085 |

試求:(一)鍋爐至渦輪機間之管路所逸散的熱傳量(kJ/kg)

- 二渦輪機所作之功 (kJ/kg)
- (三)冷凝器之放熱量(kJ/kg)
- 四鍋爐所需之熱量 (kJ/kg)