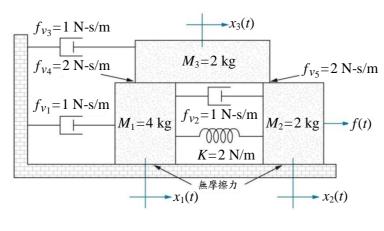
103年公務人員高等考試三級考試試題 代號:26270

全一張 (正面)

科:機械工程 類

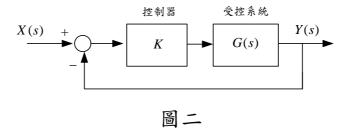

科 目: 自動控制

考試時間: 2小時 座號:

※注意: (一)可以使用電子計算器,須詳列解答過程。

(二)不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

- 一、圖一為彈簧阻尼質量系統,其中M為質量、 f_v 為摩擦阻尼常數、K為彈簧常數, x_1 、 x_2 、 x_3 分別為 M_1 、 M_2 、 M_3 之位移。設 x_1 、 x_2 、 x_3 初始值均為 0, f(t)為力量 輸入。(每小題10分,共20分)
 - (一)試推導本系統之微分方程式。
 - (二)試推導狀態方程式,設狀態變數為 $z_1 = x_1; z_2 = \dot{x}_1; z_3 = x_2; z_4 = \dot{x}_2; z_5 = x_3; z_6 = \dot{x}_3$ 。

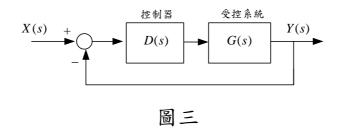


圖一

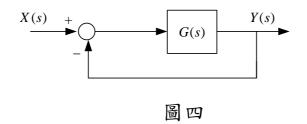
二、控制系統如圖二所示,受控系統 $G(s) = \frac{1}{m} \frac{s^2 + \omega_0^2}{s^2(s^2 + a\omega_0^2)}$, K 為控制器,設 m, a, ω_0 均

大於 0。 (每小題 10 分, 共 20 分)

- (一)試以羅斯穩定準則(Routh stability criterion)建立羅斯表(Routh table)。
- (\Box) 若K>0,試以 (\neg) 之羅斯表,說明閉迴路極點之位置。


103年公務人員高等考試三級考試試題 代號:26270

全一張 (背面)


科:機械工程 類

科 目: 自動控制

- 三、控制系統如圖三所示,受控系統 $G(s) = \frac{35}{s^2 + 12s + 35}$,D(s) 為控制器:
 - (-)設D(s)=K,試求K值使閉迴路系統之阻尼係數 $\varsigma=0.6$ 。(5分)
 - (\Box) 以 (\neg) 求出之(K)值,試求單位步階輸入之穩態誤差。(5)分
 - (Ξ) 試以增加系統型式(type of system)之方式設計控制器D(s),使步階輸入之穩態 誤差為0。(5分)
 - 四繪出 Ξ 之根軌跡,K>0。(10分)
 - (Δ) 太四之根軌跡中,使系統穩定之K 值範圍。(5)

- 四、有一單位負回授之閉迴路控制系統如圖四,其閉迴路轉移函數為 $T(s) = \frac{10(s+1)}{s^2+9s+10}$:
 - (-)試求其開迴路 (open loop) 轉移函數 G(s) 。 (5分)
 - \Box 請繪出開迴路系統G(s)之波德圖(Bode plot)的漸進線(asymptote),包含大小 圖 $(20\log|G(jw)|\sim w)$ 及相位角圖 $(\angle G(jw)\sim w)$ 。 (10 分)
 - (Ξ) 試推導開迴路系統G(s)之增益邊際(gain margin)、相位邊際(phase margin)及 其對應之頻率。(10分)
 - 四試以(三)之結果說明G(s)是否穩定。(5分)

