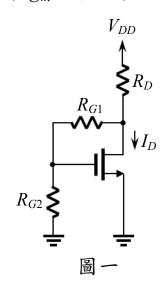
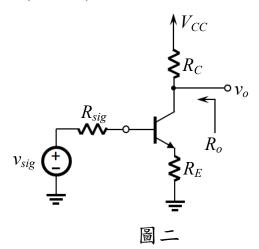
106年公務人員高等考試三級考試試題

25760 代號: | 25960 (正面)


類 科:電力工程、電子工程、電信工程

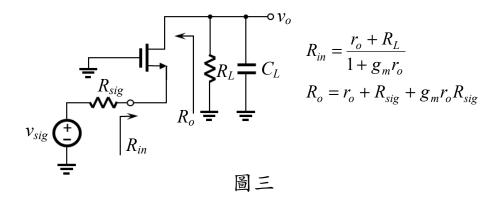
科 目:電子學


※注意:(一)禁止使用電子計算器。

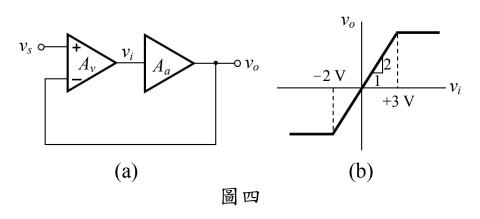
(二)不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

一、圖一電路 V_{DD} =+5 V, R_D =4 kΩ, R_{G1} =8 kΩ, R_{G2} =4 kΩ,MOSFET 之臨界電壓 (threshold voltage) V_t =0.75 V,製程參數 k_n = $k_n'(W/L)$ =8 mA/V²,求算 I_D 以及 MOSFET 轉導 (transconductance) g_m 之值。(20 分)

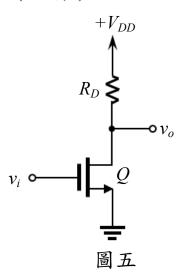
二、圖二中電晶體偏壓於主動區,其小訊號參數 $g_m \cdot r_\pi \cdot r_o \cdot \beta = g_m r_\pi$ 為已知, v_{sig} 為外加電壓訊號源。畫出圖二電路的小訊號等效電路,並列式推導 R_o 之數學式,以 $R_E \cdot R_C \cdot R_{sig}$ 及電晶體小訊號參數表示。(20分)


106年公務人員高等考試三級考試試題

25760 代號: | 25960 (背面)


類 科:電力工程、電子工程、電信工程

科 目:電子學


三、圖三中電晶體偏壓於飽和區,小訊號參數 $g_m = 2.4 \text{ mA/V}$, $r_o = 10 \text{ k}\Omega$,寄生電容 $C_{gs} = 5/\pi$ pF 與 $C_{gd} = 0.35/\pi$ pF。取 $R_{sig} = 0.4 \text{ k}\Omega$, $R_L = 20 \text{ k}\Omega$, $C_L = 0.5/\pi$ pF。低頻時其輸入電阻 R_{in} 與輸出電阻 R_o 公式如圖所示。以開路時間常數法估算此放大器增益 $A_v = v_o/v_{sig}$ 之高頻 3-dB 頻率,以 Hz 表示,忽略電晶體之 body effect。(20 分)

四、圖四(a)運算放大器開路增益 $A_v = v_i/v_s = 20 \text{ V/V}$,其他特性均為理想;放大器 $A_a \geq v_o - v_i$ 轉換曲線如圖四(b)。畫出 $v_o - v_s$ 大訊號操作之轉換曲線,必須標示各線段之轉折點電壓與斜率,並詳列數學式說明所得之各數據。(20分)

五、圖五反相器之高低電位輸入雜訊邊限(noise margin)分別定義為 $NM_H = V_{OH} - V_{IH}$ 與 $NM_L = V_{IL} - V_{OL}$,其中 V_{IL} 與 V_{IH} 為其 v_o - v_i 轉換曲線斜率為-1 時之輸入電位, V_{OH} 與 V_{OL} 分別為反相器輸出之高低電位,且輸入為 V_{OH} 與 V_{OL} 時其輸出分別為 V_{OL} 與 V_{OH} 。 電晶體 Q 之製程參數 $k_n'(W/L) = 2$ mA/ V^2 , $V_t = 0.8$ V, $v_o = \infty$ 。 $V_{DD} = 1.6$ V, $R_D = 20$ k Ω ,求算其 V_{OH} 、 V_{IH} 、 V_{IL} 與 V_{OL} 。(20 分)

