代號:61160 頁次:4-1 107年公務人員特種考試司法人員、法務部 調查局調查人員、國家安全局國家安全情報 人員、海岸巡防人員及移民行政人員考試試題

考 試 別:國家安全情報人員

等 別:三等考試 類 科 組:電子組 科 目:工程數學 考試時間:2小時

座號:

※注意:禁止使用電子計算器。

甲、申論題部分: (50分)

(一)不必抄題,作答時請將試題題號及答案依照順序寫在申論試卷上,於本試題上作答者,不予計分。

□請以藍、黑色鋼筆或原子筆在申論試卷上作答。

(三)本科目除專門名詞或數理公式外,應使用本國文字作答。

二、令矩陣
$$\mathbf{A} = \begin{bmatrix} 7 & -6 & -12 \\ -4 & 5 & 8 \\ 6 & -6 & -11 \end{bmatrix}$$
。

(-)試求一可逆矩陣 \mathbf{Q} 與一對角矩陣 \mathbf{D} 使得 $\mathbf{D} = \mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}$,其中 \mathbf{D} 必須為

$$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}$$
的型式。(10分)

(二)試求 $\mathbf{A}^{25} + 3\mathbf{A}^{100}$ 。 (5 分)

三、試用拉普拉氏轉換(Laplace transform)方法求解聯立微分方程式:

$$\begin{cases} \frac{d}{dt}x(t) + \frac{d}{dt}y(t) - x(t) = 0\\ \frac{d}{dt}x(t) + 2\frac{d}{dt}y(t) = \sin(2t), \quad x(0) = y(0) = 0 \end{cases}$$
 (10 $\%$)

四、一隨機變數
$$X$$
 之機率密度函數(density function)為 $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, x \ge 0 \\ 0, x < 0 \end{cases}$,其中 $\lambda > 0$,求 $E[X|X>5]$ 為何?(15 分)

乙、測驗題部分: (50分)

代號:6611

- 一本測驗試題為單一選擇題,請選出一個正確或最適當的答案,複選作答者,該題不予計分。
- 二共20題,每題2.5分,須用2B鉛筆在試卡上依題號清楚劃記,於本試題或申論試卷上作答者,不予計分。

1 設矩陣
$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$
,下列何者不是 \mathbf{A} 的特徵值(eigenvalue)?

(A)1

(B)2

(C)3

(D)4

某向量空間{ $[a+c b-a c-b b+a]^T | a, b, c \in \mathbb{R}$ },則下列何者不為其基底向量之一? 2

 $\text{(A)} \begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix}^T \qquad \quad \text{(B)} \begin{bmatrix} 0 & 1 & -1 & 1 \end{bmatrix}^T \qquad \quad \text{(C)} \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T \qquad \quad \text{(D)} \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix}^T$

關於線性方程式 $\begin{vmatrix} 3 & 1 & 2 & x_1 \\ -3 & 6 & 27 & x_2 \\ 7 & 0 & -5 & x_3 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$,下列敘述何者正確?

(A)具有唯一解

(B)具有無窮多個解

(C)無解

(D)(x₁,x₂,x₃)=(5,-27,7)為一解

4 設 $S \stackrel{x}{\triangleright} \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$ 型態的所有 \mathbf{R}^3 向量所組成的集合(其中 $x, y \in \mathbf{R}$) ,則向量 $\mathbf{w} = \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix}$ 在 S 上的投影向

量為何?

(A)
$$\begin{bmatrix} 5 \\ 3 \\ 0 \end{bmatrix}$$

$$\begin{array}{c}
5 \\
3 \\
0
\end{array} \qquad \qquad (B) \begin{bmatrix}
3 \\
-5 \\
0
\end{bmatrix}$$

$$(C)\begin{bmatrix}0\\0\\0\end{bmatrix}$$

$$(D)\begin{bmatrix} 3\\5\\0\end{bmatrix}$$

給定矩陣 $\mathbf{A} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$,下列敘述何者錯誤?

(A) {[1 2 1], [0 1 -1], [0 0 1]} 可為矩陣 A 列空間 (row space) 的一組基底 (basis)

(B) {[0 1 1] T ,[0 2 0] T ,[-2 1 3] T }可為矩陣 A 行空間(column space)的一組基底(basis)

(C)矩陣 A 的零空間 (null space) 之維度 (nullity) 為 1

(D)矩陣 A 的秩 (rank) 為 3

代號:61160 頁次:4-3

6 假設函數 $f(t) = te^{-t} \cos t$ 的拉普拉氏轉換(Laplace transform)為 $F(s) = \frac{as^2 + bs + c}{\left(s^2 + 2s + 2\right)^2}$,其中 a, b, c

是常數,求 *a+b+c=*?

(A) - 3

(B)-1

(C)1

(D)3

7 假設 $w = f(z) = z^2 + 3z$,若z = 1 + 3i,下列敘述何者正確?

(A) f(1+3i) 的實部(Real part)為 13

(B) f (1+3i) 的虛部 (Imaginary part) 為 15

(C) f(1+3i) 的實部(Real part)為5

(D) f(1+3i) 的虛部(Imaginary part)為-15

8 下列複數函數何者在任意範圍都是可微分(differentiable)?其中 z = x + yi。

 $(A) f(z) = |z|^2$

(B) f(z) = Im[z]

(C) $f(z) = \log_{\frac{\pi}{4}}(z)$

(D) $f(z) = x^3 + 2xy^2 + i(y^3 + 2x^2y)$

者錯誤?

(A)此級數在z=0收斂

(B)此級數在z=5收斂

(C)此級數在z = 7 + 2i 收斂

(D) 此級數在 z = 3 - 2i 收斂

10 下列何者為微分方程式 $y'' - 2y' + y = -12e^x$ 之通解 (其中 $y' = \frac{dy}{dx}$) ? (選項中, $c_1 \cdot c_2$ 為任意常數)

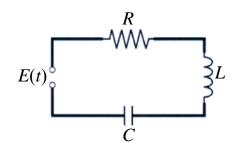
(A) $y = c_1 + c_2 e^x - 6x e^x$

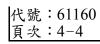
(B) $y = c_1 e^x + c_2 x e^x - 6x^2 e^x$

(C) $y = c_1 + c_2 e^x - 24xe^x$

(D) $y = c_1 e^x + c_2 x e^x - 24x^2 e^x$

11 下圖顯示一串聯 RLC 電路,其輸入電壓為 $E(t) = E_0 \sin \sigma t$,串聯電流為 I(t)。描述此電路之二次


微分方程式為 $I'' + aI' + bI = \frac{1}{L} E_0 \sigma \cos \sigma t$ 。試求出 $a \not \equiv b$ 值。


$$(A) a = \frac{R}{L}, b = \frac{1}{LC}$$

(B)
$$a = \frac{R}{L}, b = \frac{C}{L}$$

(C)
$$a = \frac{1}{LR}$$
, $b = \frac{C}{L}$

(D)
$$a = \frac{1}{LR}$$
, $b = \frac{1}{LC}$

12	假設二次微分方程式 $y'' + ay' + by = 0$ 之通解為 $A\cos 2\pi x + B\sin 2\pi x$,其中 A 及 B 為任意常數,								
	試求出 a 及 b 值。								
	(A) $a = 4\pi^2$, $b = 0$	(B) $a = 0, b = 4\pi^2$	(C) $a = 0, b = -4\pi^2$	(D) $a = -4\pi^2$, $b = 0$					
13	$z=1+i$,則複數對數 $\ln z$ 為何? (選項中 n 為整數)								
	$(A) i\sqrt{2} \ln(-\frac{\pi}{4} + 2n\pi)$	$(B) - i\sqrt{2}\ln(\frac{\pi}{4} + 2n\pi)$	$(C) \ln \sqrt{2} + i(\frac{\pi}{4} + 2n\pi)$	$(D) \ln \sqrt{2} + i(-\frac{\pi}{4} + 2n\pi)$					
14	令矩陣 $A = $ $\begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{bmatrix}$,若有一可逆矩陣 Q 與-	一對角矩陣 D 滿足 A = Q)DQ ^{-1,} 試問 D 可為何?					
	$(A) \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$ (B) \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix} $	$ (C) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $	$ (D) \begin{bmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{bmatrix} $					
15	求 cosh(at)cos(at)之拉普拉氏轉換(Laplace transform)為下列何者?								
	(A) $\frac{2a^2s}{s^4 + 4a^4}$	(B) $\frac{2a^2 + s^2}{s^4 + 4a^4}$	(C) $\frac{s^2 - 2a^2}{s^4 + 4a^4}$	(D) $\frac{s^3}{s^4 + 4a^4}$					
16	假設週期函數 $f(t)=t^2$, $-1 \le t < 1$,週期為 2 ,求其Fourier級數中的常數項。								
	$(A)\frac{2}{5}$	$(B)\frac{5}{6}$	(C) $\frac{1}{3}$	(D) $\frac{3}{5}$					
17	試求 $\frac{\sin 3t}{\pi t}$ * $\cos 10t$ 為何?其中*表示迴旋積分(convolution integral)。								
	$(A) - \frac{1}{2\pi}$	$\text{(B)}\frac{1}{2\pi}$	(C) $\frac{1}{2}$	(D) 0					
18	6 位老師被分配教授「工程數學」課程的 4 個章節,如果每位老師最多分配一個章節,有幾種分								
	配方式?								
	(A)90	(B) 180	(C)240	(D)360					
19	設離散隨機變數(random variable) X 和 Y 的聯合機率密度函數(joint probability density function)為								
	$f_{X,Y}(x,y) = 0$	$0.1\delta(x+1)\delta(y) + 0.1\delta(x)\delta(y)$ $+0.2\delta(x-1)\delta(y-1) + 0.1\delta(x)\delta(y-1)$		$\delta(x-1)\delta(y+2)$					
	其中 $\delta(\cdot)$ 為單位脈衝函式(unit impulse function),則 $\mathit{E}[\mathit{XY}]$ 之值為何?其中 $\mathit{E}[\mathit{Z}]$ 定義為隨機變								
	數Z的期望值。								
	(A) 0	(B)-0.3	(C)-0.5	(D)-0.6					
20	某隨機變數 X 之期望值	E[X] = 1,變異數 $Var[X]$	$]=2$,則 $E[(1+X)^2]=?$						
	(A)3	(B)5	(C)6	(D) 12					

測驗式試題標準答案

考試名稱: 107年公務人員特種考試司法人員、法務部調查局調查人員、國家安全局國家安全情報人

員、海岸巡防人員及移民行政人員考試

類科名稱: 電子組(選試英文)

工程數學(試題代號:6611) 科目名稱:

單選題數:20題 單選每題配分:2.50分

複選題數: 複選每題配分:

標準答案:

題號	第1題	第2題	第3題	第4題	第5題	第6題	第7題	第8題	第9題	第10題
答案	D	D	В	A	С	D	В	С	A	В
題號	第11題	第12題	第13題	第14題	第15題	第16題	第17題	第18題	第19題	第20題
答案	A	В	С	В	D	С	D	D	В	С
題號	第21題	第22題	第23題	第24題	第25題	第26題	第27題	第28題	第29題	第30題
答案										
題號	第31題	第32題	第33題	第34題	第35題	第36題	第37題	第38題	第39題	第40題
答案										
題號	第41題	第42題	第43題	第44題	第45題	第46題	第47題	第48題	第49題	第50題
答案										
題號	第51題	第52題	第53題	第54題	第55題	第56題	第57題	第58題	第59題	第60題
答案										
題號	第61題	第62題	第63題	第64題	第65題	第66題	第67題	第68題	第69題	第70題
答案										
題號	第71題	第72題	第73題	第74題	第75題	第76題	第77題	第78題	第79題	第80題
答案										
題號	第81題	第82題	第83題	第84題	第85題	第86題	第87題	第88題	第89題	第90題
答案										
題號	第91題	第92題	第93題	第94題	第95題	第96題	第97題	第98題	第99題	第100題
答案										

備 註: