代號:34580、35380 35480、37080

109年公務人員高等考試三級考試試題

37180 頁次:2-1

科:衛生行政、漁業技術、養殖技術、衛生技術、食品衛生檢驗

目:生物統計學 科

考試時間:2小時 座號:

※注意:(一)可以使用電子計算器。

(二)不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

(三本科目除專門名詞或數理公式外,應使用本國文字作答。

假說檢驗請寫出假說、計算過程及結論, $\alpha = 0.05$

- 一、105~109年全國龍膽石斑養殖放養數量分別為103.4, 143.2, 72.7, 78.1, 48.3 百萬尾。
 - (一)求這五年龍膽石斑養殖放養數量的平均值、中數、變異數、全距、變異 係數 (CV)。(10分)
 - □求放養數量平均值的95%信賴區間。(9分)
 - (三)母群體平均值是否大於100百萬尾? (6分)
- 二、三酸甘油脂與遺傳因子LDLR突變可能有關,沒有此突變的20人三酸 甘油脂平均值為170.8 (mg/dl),標準差20.8;有突變的10人平均值為 250.3 (mg/dl),標準差40.4,假設三酸甘油脂為常態分佈,兩組母群體標 準差相同,請問兩組三酸甘油脂平均值是否相同?(25分)
- 三、新冠肺炎確診死亡的病例中,許多原有其他病因,如心臟病、糖尿病等, 下表為不同年齡有無其他病因死亡人數:

年龄	<40	40~64	≥65
有其他病因	250	1340	2630
無其他病因	30	60	70

- 一)如上表,列出原來有或無其他病因各年齡層死亡比例的期望值。(6分)
- □檢驗各年齡層原有其他病因與無其他病因的死亡比例是否相同?(19分)
- 四、海水魚類多樣性指數(Y)可能與水深(X,公尺)有關,由拖網漁船在 不同深度取得18個網次樣本,最小平方法求得簡單直線迴歸模型如下:

變數	估計值	自由度	標準誤差
b_0	0.0004	1	0.0003
b_1	-0.92	a	0.54

- (→線性迴歸模型為何?(3分)
- (二)分別解釋迴歸係數b₀、b₁在此拖網漁船數據的意義、自由度a為何?(6分)
- (三)檢驗兩者是否有顯著的線性迴歸關係。(9分)
- 四試求決定係數 (coefficient of determination) 並解釋其意義。(7分)

代號: 34580、35380 35480、37080 37180 頁次: 2-2

附表一

Percentiles of the chi-square distribution

	Area in Upper Tail						
dî	0.100	0.050	0.025	0.010	0.001		
1	2.71	3.84	5.02	6.63	10.83		
2	4.61	5.99	7.38	9.21	13.82		
3	6.25	7.81	9.35	11.34	16.27		
4	7.78	9.49	11.14	13.28	18.47		
5	9.24	11.07	12.83	15.09	20.52		
6	10.64	12.59	14.45	16.81	22.46		
7	12.02	14.07	16.01	18.48	24.32		
8	13.36	15.51	17.53	20.09	26.12		
9	14.68	16.92	19.02	21.67	27.88		
10	15.99	18.31	20.48	23.21	29.59		
11	17.28	19.68	21.92	24.72	31.26		
12	18.55	21.03	23.34	26.22	32.91		
13	19.81	22.36	24.74	27.69	34.53		
14	21.06	23.68	26.12	29.14	36.12		
15	22.31	25.00	27.49	30.58	37.70		
16	23.54	26.30	28.85	32.00	39.25		
17	24.77	27.59	30.19	33.41	40.79		
18	25.99	28.87	31.53	34.81	42.31		
19	27.20	30.14	32.85	36.19	43.82		
20	28.41	31.41	34.17	37.57	45.31		
21	29.62	32.67	35.48	38.93	46.80		
22	30.81	33.92	36.78	40.29	48.27		
23	32.01	35.17	38.08	41.64	49.73		
24	33.20	36.42	39.36	42.98	51.18		
25	34.38	37.65	40.65	44.31	52.62		

附表二

Percentiles of the t distribution

Area in Upper Tail						
dî	0.10	0.05	0.025	0.01	0.005	0.0005
1	3.078	6.314	12.706	31.821	63.657	636.619
2	1.886	2.920	4.303	6.965	9.925	31.599
3	1.638	2.353	3.182	4.541	5.841	12.924
4	1.533	2.132	2.776	3.747	4.604	8.610
5	1.476	2.015	2.571	3.365	4.032	6.869
6	1.440	1.943	2,447	3.143	3.707	5.959
7	1.415	1.895	2.365	2.998	3.499	5.408
8	1.397	1.860	2.306	2.896	3.355	5.041
9	1.383	1.833	2.262	2.821	3.250	4.781
10	1.372	1.812	2.228	2.764	3.169	4.587
11	1.363	1.796	2.201	2.718	3.106	4.437
12	1.356	1.782	2.179	2.681	3.055	4.318
13	1.350	1.771	2.160	2.650	3.012	4.221
14	1.345	1.761	2.145	2.624	2.977	4.140
15	1.341	1.753	2.131	2.602	2.947	4.073
16	1.337	1.746	2.120	2.583	2.921	4.015
17	1.333	1.740	2.110	2.567	2.898	3,965
18	1.330	1.734	2.101	2.552	2.878	3.922
19	1.328	1.729	2.093	2.539	2.861	3.883
20	1.325	1.725	2.086	2.528	2.845	3.850
21	1.323	1.721	2.080	2.518	2.831	3.819
22	1.321	1.717	2.074	2.508	2.819	3.792
23	1.319	1.714	2.069	2.500	2.807	3.768
24	1.318	1.711	2.064	2.492	2.797	3.745
25	1.316	1.708	2.060	2.485	2.787	3.725
26	1.315	1.706	2.056	2.479	2.779	3.707
27	1.314	1.703	2.052	2.473	2.771	3.690
28	1.313	1.701	2.048	2.467	2.763	3.674
29	1.311	1.699	2.045	2.462	2.756	3.659
30	1.310	1.697	2.042	2.457	2.750	3.646