台灣自來水公司 104 年評價職位人員升任分類職位人員甄試試題

甄試類別:化學工程【H4603】

專業科目 B:1.儀器分析(含環境監測)、2.水處理化學概要(含淨、廢水)

※請填寫入場通知書編號:

- 注意:①作答前須檢查答案卡、入場通知書編號、桌角號碼、應試類別是否相符,如有不同應立即請監試人員處 理,否則不予計分。
 - ②本試卷兩張三面共80題,每題1.25分,限用2B鉛筆在「答案卡」上作答,請選出最適當答案,答錯 不倒扣; 未作答者, 不予計分。
 - ③本項測驗僅得使用簡易型電子計算器(不具任何財務函數、工程函數功能、儲存程式功能),但不得發出 聲響;若應考人於測驗時將不符規定之電子計算器放置於桌面或使用,經勸阻無效,仍執意使用者,該 科扣 10 分;該電子計算器並由監試人員保管至該節測驗結束後歸還。
 - ④請勿於答案卡書寫應考人姓名、入場通知書號碼或與答案無關之任何文字或符號。
 - ⑤答案卡務必繳回,違反者該科成績以零分計算。

【儀器分析(含環境監測)】

- 【3】1.如何由一種偵測器的線性標準品檢量線(y = ax + b)得知此偵測器的靈敏度(Sensitivity)?
- ①檢量線的 Y 軸截點 ②檢量線的 X 軸截點 ③檢量線的斜率 ④檢量線的線性節圍
- 【2】2.以火焰放射光譜儀測試含銅工業廢水樣品的訊號值為 0.350, 若銅之線性標準品(in ppm)檢量線的斜率為 0.0701,而其背景值為 0.0083 ppm,則此工業廢水中的銅含量為幾 ppm?
- ① 3.56 ppm
- ② 4.87 ppm

③ 5.23 ppm

4 6.49 ppm

- 【2】3.下列何者為吸收光譜儀組成元件正確的相對位置?
- ①光源-樣品-光波選擇器-偵測器

②光源-光波選擇器-樣品-偵測器

③光源-樣品-偵測器-光波選擇器

④樣品-光源-光波選擇器-偵測器

- 【4】4.下列何種光譜具有最短的波長?
- ①紫外光

②紅外光

③微波(Microwave)

4 X 射線

- 【3】5.下列何種分析儀器無需光波選擇器(即單色光器 Monochromator)?

②紫外光/可見光光譜儀

③傅立葉轉換紅外線光譜儀

④分子螢光儀

- 【2】6.光譜儀以光柵(Grating)作為光波選擇器,其光波選擇原理為何?
- ①光波的折射變化

①原子吸收光譜儀

- ②光波的繞射干擾
- ③光波的吸收程度

④光波的散射角度

- 【2】7.下列哪一種光譜儀的進樣(Sample Introduction)系統需要霧化器(Nebulizer)處理溶液樣品?
- ①紫外光/可見光光譜儀

②原子吸收或放射光譜儀

③傅立葉轉換紅外線光譜儀

④核磁共振光譜儀

- 【3】8.於原子放射光譜儀的熱火焰中,含有 KCl 的樣品溶液其 Na 原子的 589.0 及 589.6 nm 放射光強度會大於不 含 KCI 的樣品溶液,其原因為何?
- ①因 K 原子放射出強光

②因 Cl 原子與 Na 原子作用

③因 K 原子游離出大量的電子抑制 Na 原子游離 ④因 K 原子游離出大量的電子幫助 Na 原子游離

- 【1】9.原子吸收光譜儀的中空陰極燈(Hollow-Cathode Lamp)為何種組成元件?
- ①光源(Radiation Source)

②光波選擇器(Wavelength Selector)

③原子化器(Atomizer)

④換能器(Transducer)

- 【4】10.為何誘導耦合電漿(Inductively Coupled Plasma, ICP)原子放射光譜儀的離子化干擾(Ionization Interferences) 較火焰原子放射光譜儀不嚴重?
- ①火焰中具有較多的雜質

②電漿的溫度較高

③火焰中具有較高的離子化能量

④電漿中具有高濃度的電子

- 【3】11.為何誘導耦合電漿質譜儀(ICPMS)是一種重要且廣泛使用的元素分析工具?
- ①價格大眾化
- ②樣品處理簡單
- ③高靈敏度

④無需製作檢量線

- 【1】12.下列何種質譜儀組成元件無需處於直空狀態?
- ①樣品進樣系統(Sample Inlet System)

②離子源(Ion Source)

③質量分析器(Mass Analyzer)

④離子偵測器(Ion Transducer)

- 【2】13.下列哪一種原子質譜儀的質量分析器分離質荷比(Mass-to-Charge Ratio, m/z)訊號不是依據電磁場作用力?
- ①四極柱質量分析器(Quadrupole Mass Analyzer)
- ②飛行時間質量分析器(Time-of-Flight Mass Analyzer)
- ③雙聚焦質量分析器(Double-Focusing Mass Analyzer)
- ④離子阱質量分析器(Ion-Trap Mass Analyzer)
- 【3】14. X 射線螢光光譜儀(X-Ray Fluorescence Spectrometer, XRF)可用來檢測土壤中何種物質?
- ①微生物
- ②農藥

- ③重金屬元素
- ④環境荷爾蒙
- 【3】15.下列哪一種分子發色團(Chromophore)的電子躍遷(Electronic Transition)可吸收紫外光/可見光?
- ① $\sigma \rightarrow \pi^*$
- ② $\sigma \rightarrow n^*$
- $\mathfrak{I} n \rightarrow \pi^*$
- 【1】16.下列哪一種溶劑可使用於咖啡因(Caffeine, $\lambda_{max} = 273$ nm)的紫外光吸收檢測?
- ①水 (water, UV 截止波長(cut off wavelength) = 180 nm)
- ②己烷 (Hexane, UV 截止波長(cut off wavelength) = 200 nm)
- ③四氯化碳 (CCl₄, UV 截止波長(cut off wavelength) = 260 nm)
- ④丙酮(Acetone, UV 截止波長(cut off wavelength) = 330 nm)
- 【3】17.分子螢光的共振螢光(Resonance Fluorescence)具有何種性質?
- ①分子於激發態振動所產生

- ②以較長的激發光激發所產生 ④ 經由電子與原子共振所產生
- ③放射螢光波長與激發光波長相等
- 【4】18.下列何種程序可產生螢光?
- ①振動鬆弛(Vibrational Relaxation) ②內部轉換(Internal Conversion)
- ③系統間跨越(Intersystem Crossing)
- ④自激發單重態(Excited Singlet State)躍遷至基本單重態(Ground Singlet State)
- 【2】19.分子螢光光譜儀的激發光源與偵測器的夾角為多少?
- ① 60°
- ② 90°
- 3 120°
- 4 180°
- 【2】20.分子螢光檢測鎘米中的鎘離子(Cd²⁺),可使用下列何種方法?
- ①直接量測釋放出的自由鎘離子
- ②量測含苯基螢光劑與鎘離子形成螯合物(Chelate)所發螢光
- ③間接量測鎘離子減低含苯基螢光劑所放射的螢光
- ④量測鎘離子與螢光試劑氧化還原產物的螢光
- 【1】21.若中紅外光譜的波長範圍為 2.5-50 μ m, 其相對應的波數(Wavelength Number, ν)範圍為多少?
- ① 4000-200 cm⁻¹
- $240000-2000 \text{ cm}^{-1}$
- $3400000-20000 \text{ cm}^{-1}$ $400000-20000 \text{ cm}^{-1}$ $1.2 \times 10^{14}-6.0 \times 10^{12} \text{ cm}^{-1}$
- 【4】22.傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer, FTIR)產生紅外光譜的主要光學元件是甚
- ①單光器(Monochromator)

②光束分裂器(Beamsplitter)

③反射鏡(Reflecting Mirror)

- ④移動鏡干涉器(Moving Mirror Interferometer)
- 【3】23.一種液體有機化合物的實驗式(Empirical Formula)為 C_3H_6O ,若其紅外光譜於~3400 cm $^{-1}$ 有一個寬廣的波 帶,則此化合物應屬哪一類有機物?
- ①芳香化合物(Aromatic Compounds)
- ②醚類化合物(Ethers)

③醇類化合物(Alcohols)

- ④酮類化合物(Ketones)
- 【4】24.拉曼光譜(Raman Spectrum)屬於下列哪一種光譜?
 - ②分子振動光譜(Molecular Vibration Spectrum)
- ①電子躍遷光譜(Electronic Transition Spectrum) ③分子轉動光譜(Molecular Rotation Spectrum)
- ④分子散射光譜(Molecular Scattering Spectrum)
- 【1】25.以波長 488nm 雷射光激發 CCl4分子,若其拉曼光譜具有一斯托克斯拉曼位移譜線(Stokes Raman Shift Line) 於-218cm-1,則其對應之反斯托克斯拉曼位移譜線(Anti-Stokes Raman Shift Line)為多少?
- ① $+218 \text{ cm}^{-1}$
- $2 + 248 \text{ cm}^{-1}$
- $3 + 278 \text{ cm}^{-1}$
- $4 + 308 \text{ cm}^{-1}$
- 【2】26.下列哪一種質譜儀的離子源(Ion Source)不須先將樣品氣化再予以離子化?
- ①場游離離子源(Field Ionization Source)

③什學游離離子源(Chemical Ionization Source)

②電噴灑游離離子源(Electrospray Ionization Source)

④電子撞擊離子源(Electron Impact Source)

【請接續背面】

【4】27.哪一種質譜離 ①場游離離子源(Fie	子源可以得到較多的質譜碎 ld Ionization Source)		N號以供分子結構判斷? 原(Electrospray Ionization Source)	【1】42.化合物中組成原 ①電子數	原子的氧化數端視何者而定? ②中子數	③ 原子數	④質子數	
③化學游離離子源(Chemical Ionization Source)	④電子撞擊離子源(I	Electron Impact Source)	【1】43.氣體是三種物質	質基本狀態之一,因此對於氣	承體特性行為,可以經由	用哪三種定律加以描述?	
【3】28.請計算質譜儀分	分離 $C_3H_7N_3^+(M=85.0641)$ 及	$C_5H_9O^+(M = 85.0653)$	種離子訊號所需的解析率(Resolution, R)?	①亞佛加厥定律(Avo	gadro's law)、波以耳定律(Bo	oyle's Law)及查理定律(C	Charles's Law)	
① 5.09×10^4	26.09×10^4	37.09×10^4	$\oplus 8.09 \times 10^4$	②道爾吞定律(Dalton's Law)、黑斯定律(Hess's Law)及胡克定律(Hooke's Law)				
【3】29.電化學電池的	參考電極(Reference Electrod	e)電位必須符合下列哪	一條件?	③菲克定律(Fick's La	w)、拉午耳定律(Raoult's La	w)及亨利定律(Henry's L	aw)	
①隨著量測溶液的約	且成改變	②隨著量測溶液的溫	温度上升而增加	④達西定律(Darcy's Law)、歐姆定律(Ohm's Law)及傅立葉定律(Fourier's Law)				
③於特定溫度下為恆	定定值	④隨著電流值增加7	可變大	【3】44.在水及廢水處理程序中,常添加混凝劑來沉降懸浮固體物質,下列何者非混凝劑影響混凝作用之因素?				
【1】30.量測環境水樣	pH 值的 pH 電極(玻璃電極)	是量測下列何種電性改	₹變?	①水樣 pH 值(鹼度)及其特性		②水溫與攪拌方式		
①電位	②電流	3電阻	④電容	③空氣含量及透視度		④混凝劑分子大小及其所帶電荷		
【4】31.伏安法(Voltam 知比例常數 k 值為多		iting Current, i)與分析物	n的濃度 (c) 成正比,即 $i=kc$,如何可以獲	【1】45.執行水質化學需 值偏高,故可加入哪		mand, COD)分析時,因	鹵素化合物會消耗氧化劑量,導致量測	
◎經由標準氧化還原	『電位量測	②經由氧化還原滴定		①硫酸汞試劑	②菲羅林(Ferroin)試劑	③硫酸銀試劑	④胺基磺酸	
③經由庫倫法(Could	ometry)電流計算	④經由標準品檢量緣	泉製作	【2】46.下列何者非水質	質標準之物理性指標?			
【3】32.氣相層析(Gas (Chromatography, GC)或液相層	動作(Liquid Chromatograp	ohy, LC)的'氣相'及'液相'指的是何種物質?	①濁度	② pH 值	③色度	④臭度	
	nn Packing Material)	②分析樣品(Analyte Sample)		【4】47.下列何者非水中	中鹼度之主要影響物質?			
③流動相(Mobile Ph		④偵測器種類(Detec	_	① OH-	② CO ₃ ²⁻	③ HCO₃⁻	⊕ NH ₃	
【4】33.層析波峰變寬(Peak Broadening)的因素可由范丁特方程式(van Deemter Equation) $H = A + B/u + (C_S + C_M)u$ 表示,請問式中 B 項因素為何?				【1】48.我國目前採用河 ① COD	可川污染指標 RPI(River Pollu ② SS	ution Index)中,下列何者 ③ NH3-N	音非 RPI 據以判斷分析項目? ④ BOD ₅	
①渦流擴散(Eddy Di		②多重路徑效應(Mu	ultiple Path Effect)	【2】49.地下水主要來源	夏來自於隆雨入滲與河川、湖	- 泊及水庫水之滲流。對	。 於地下水特性之敘述,下列何者錯誤?	
③物質傳遞效應(Ma			ngitudinal Diffusion Effect)	①水質穩定且佳	②水溫隨氣候變化大	③供給之水量穩定	④開發較易且快	
【3】34.相鄰兩層析波	峰若其波峰底部正好分離,	則二波峰的解析率(Res	olution, R)應為下列哪一個?		度過高時,下列何者非有效處			
① $R < 1.0$	② $R = 1.0$	$\Im R > 1.0$	④無法預知	①混凝沉澱	②活性碳吸附	③臭氧分解	④調整酸鹼值	
【1】35.以氣相層析儀分	分析環境樣品時常使用溫度程	武(Temperature Program	nming)技術,此技術特別適用於何種樣品?				中,生物所需各類營養素中,必有一最	
①環境樣品內各分析物的沸點差異很大 ②環境樣品內各分析物的沸點差異很小				為缺乏而成為生長控制因子。以藻類為例,其生長控制因子為下列何種元素?				
③環境樣品內含有研		④環境樣品內含有熱		①二氧化碳	②無機鹽	③磷	④ 水份	
【1】36.下列哪一種氣	相層析儀的偵測器屬於濃度	敏感(Concentration Sens	sitive)偵測器?		到體所致,其對於水體之影響 11	/ !	. 3 - 103	
	ermal Conductivity Detector,		, , , , , , , , , , , , , , , , , , , ,	①影響水體外觀並阻礙光的穿透 ②影響水體自淨作用的能力,使呈現厭氧狀態 ③影響水生植物的光合作用 ④影響魚類的生長與繁殖,甚至使其窒息而死亡				
②熱離子偵測器(The	ermionic Detector)							
③火焰離子偵測器(I	Flame Ionization Detector, FII))		【4】53.安全資料表(Safety Data Sheet)又被稱為化學物質的身分證,它能提供化學物質重要的安全衛生特性資料,				
④火焰光度計偵測器(Flame Photometric Detector, FPD)				因此對於安全資料表敘述,何者錯誤?				
【3】37.以 C ₁₈ 逆相高效	汝液相層析(Reversed-phase H	ligh Performance Liquid	Chromatography, RP-HPLC)管柱及動態相	①是消防或急救人員緊急應變處理參考				
甲醇/水(50/50, v/v)	進行苯乙酮(C₀H₅COCH₃)、□	月苯(C ₆ H ₅ CH ₃)、酚(C ₆ H	I ₅ OH)及硝基苯(C ₆ H ₅ NO ₂)四種苯化合物分	②是化學物質貯存方式及職業傷病診斷治療參考 ③其內容格式由十六大項所組成且更新紀錄需保留三年				
離,則下列哪一個沒	t 沖次序(到達先後次序)為正	確?						
①滯留時間:苯乙酮	引<酚<硝基苯<甲苯	②滯留時間:酚<硝	基苯<甲苯<苯乙酮	④須由雇主提供或向				
③滯留時間:酚<苯乙酮<硝基苯<甲苯			【2】54.將 10 mL 之水樣以去離子水稀釋至 50 mL 並依照標準方法進行分析。分析結果消耗了 2.54 x 10 ⁻⁴ 莫耳之					
【2】38.以離子交換層標	折(Ion-exchange Chromatogra	phy)管柱用於分離重金	屬陽離子汙染物時,若洗沖溶液的離子強	重鉻酸鉀,則此樣品之化學需氧量(Chemical Oxygen Demand, COD)為何?				
度(Ionic strength)增加,則被分離的陽離子的滯留時間會如何變化?				① 203 mg O ₂ /L	② 1219 mg O ₂ /L	3 41 mg O ₂ /L	⊕ 244 mg O ₂ /L	
①增加	②減小	③不會改變	④無法預測	【1】55.取 10 mL 之水材	樣及 2 mL 植種水樣進行生化	上需氧量(Biochemical Ox	xygen Demand; BOD)檢驗,初溶氧值為	
【1】39.尺寸排斥層析	(Size-exclusion Chromatograp	phy, SEC)通常用來分離	何種化學物?				:化需氧量(Biochemical Oxygen Demand;	
①高分子化合物	②無機陰離子或陽離子	③空氣汙染物	④塑化劑	BOD)檢驗,初溶氧值	為 3.5 mg O ₂ /L,5 日後溶氧	值為 1.5 mg O ₂ /L,則此	樣品之生化需氧量(Biochemical Oxygen	
【4】40.下列哪一種高	效液相層析儀偵測器的選擇	性(Selectivity)最差?		Demand; BOD)為何?)			
①螢光偵測器(Fluorescence Detector) ②紫外/可見光偵測器(Ultraviolet/Visible Detector)			\bigcirc 78 mg/L	@65 mg/L	39 mg/L	\oplus 35 mg/L		
③電化學偵測器(Ele	ectrochemical Detector)	④折射率偵測器(Re	fractive Detector)	【2】56.指一測定值或一	一組測定值之平均值與其確認	忍值或配製值接近的程度	E ,稱之為:	
	A \.			①標準偏差(standard	deviation)	②準確度(Accuracy)		
【水處理化學概要(含				③偏差(deviation)		④精密度(Precision)		
			建立飲用水質標準之基本原則?	【1】57.為檢查採樣及檢	檢驗過程中可能導入的污染而	而設計的樣品,稱之:		
①已往慣例	②動植物實驗	③統計比較	④人體曝露	⊕空白樣品	②實驗室空白	③設備空白 【請接續下頁】	④盲樣檢測	

【1】58.重量分析實驗中所謂恆重,係指樣品前後兩	了次重量差值在多少範圍	以内?	【4】70.薄膜積垢(fouling	g)常見於薄膜過濾系統中,	對於薄膜過濾系統效能	及薄膜發展均有影響。為防止薄膜積垢		
① 0.0005 g ② 0.0010 mg	③ 0.0005 mg	④ 0.0001 g	產生,下列預防方式何	可者錯誤?				
【1】59.於廢水二級處理中,依據水質檢驗結果,調			①原水或廢水前處理	6 4 P . Jane L . Ja	②良好清洗設備	T. W. speed. I		
污泥容積指標(Sludge volume index, SVI)。取一悬	=	. 之混合水樣 1 升,經 30 分鐘沉降後,	③操作設計及日常保養程序確實 ④增大薄膜孔隙度及操作壓力					
污泥體積為 180 mL。請計算該水樣之 SVI 值為何		@ 130 - /I		- · · · · · · · · · · · · · · · · · · ·	檢離子、重金屬離子、硫	、磷等離子,此類物質多需以化學方式		
① 72 mL/g ② 14 mL/g	③ 100 mL/g	④ 120 g/mL	去除。下列處理刀式Ч ● pH 值調整	中何者非化學處理單元? ②電透析法	3氧化還原	④ 化學沉澱		
【1】60.氨氮來自工廠排放、肥料使用、生活污水、 而主要亞硝化反應係由硝化菌 Nitrosomonas 促成			-					
55 NH ₄ ⁺ +A O ₂ +109 HCO ₃ ⁻ \rightarrow C ₅ H ₇ O ₂ N+54 N			【2】72.淨水工程常用之消毒劑包含:氯氣、次氯酸鈉、次氯酸鈣、二氧化氯及臭氧,如依照氧化力大小,由大至 小依序排列,下列何者正確?					
① 76 ② 195	③ 57	④ 54		· 氯氣 > 次氯酸	②臭氧 > 二氧化氯 >	· 次氯酸 > 氢氯		
【3】61.對於活性碳過濾器淨水處理之敘述,下列何	「者錯誤?		③氯氣 > 次氯酸 > 二		④氯氣 > 二氧化氯 >			
①可去除大部分之餘氯及其消毒副產物	②可過濾部分膠體性及		【2】73.以離子交換法處理廢水時,須考量樹脂對廢水中欲去除離子的選擇性,因此假設在常溫及低濃度狀態下,					
③可改善水質硬度 ④對於水質具有脫色效果			各種樹脂對廢水中各種離子親和力大小,下列何者錯誤?					
[1] 62.沉澱乃利用重力原理將固體顆粒自水中分離	主 ,有關沉澱池設計之敘	过,下列何者錯誤?	① $Fe^{3+} > Mg^{2+} > K^+$	$2 \text{ NO}_3 > \text{SO}_4^{2-} > \text{PO}_4^{3-}$	$\Im \operatorname{Ca}^{2+} > \operatorname{Mg}^{2+} > \operatorname{Be}^{2+}$			
①沉澱池效率與池深成正比例關係	②須考量水中固體形制	犬與大小				T, Dibutylhydroxytoluene, $C_{15}H_{24}O)440$		
③須考量固體沉降速度	④須考量流體流速與黍	占滯性		需氧量對總有機碳之比值為				
【3】63.活性碳是一種多孔性具有極大表面積的材料	,當空氣或水中的微量	有機污染物接觸活性碳時,會被活性碳	① 3.73	② 3.60	③ 0.54	4 1.02		
所吸引,進而停留在碳表面,達到去除污染的目的		影響因子?		劑不是行政院環保署公告之				
①活性碳本身性質,包括其表面積大小、孔隙大/			①臭氧	②硫酸	③碘	④氣態二氧化氯		
②污染物性質,包括其分子大小、溶解度及離子位			【2】76.下列何者不是行政院環保署公告之飲用水之種類?					
③其等溫吸附線的參數不會隨系統中污染物種類			①社區自設公共給水設		②山泉水			
④水溶液性質,包括有 pH 值、溫度、溶解性固體		序A.T	③經連續供水固定設備		⑨簡易自來水	THE ALL DESCRIPTION OF THE PROPERTY OF THE PRO		
【2】64.都市污水下水道内之厭氧環境極易產生並累 為下列何種化學物?	惧局减及Ⅲ垣风下小组	腐 既及女主厄吉之物貝,頭问匹厄吉物	【1】77.飲用水標準及放流水標準中,對於大腸桿菌群之檢測,下列敘述何者錯誤?					
の甲烷 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	②硫化氫		①滅菌高壓釜溫度要能保持在 121℃、壓力約 2.0 kg/cm² 下持續滅菌 15 分鐘以上 ②多管醱酵法要先進行推定試驗,若結果為陽性反應,再進行確定試驗					
③揮發性有機物	③濾膜法檢測,若有大腸桿菌群則會產生具金屬光澤菌落							
【1】65.浮除(flotation)是一種將顆粒浮至水面刮除,	●二氧化碳 以澄清廢水或濃縮污泥6	的方法。若在室溫時,一廢水中含油滴,		於中國研究首座上吳並屬 養箱內設定之溫度為 35±1		小時		
其平均粒徑 $d = 80 \mu \text{m}$,密度 $\rho_o = 950 \text{kg/m}^3$,假設						, , , , , , , , , , , , , , , , , , ,		
重力加速度 g = 9.8 m/s²;該廢水 24 小時平均正常			果,下列敘述何者錯誤?					
$- ho_o$) g d^2] $/(18~\mu)$ 。請估算此油滴於重力浮除池稿	長面積需求為何?		①好氧處理程序能源耗用較厭氧處理程序高					
① 152 m^2 ② 15.83 m^2	3158.3 m^2	4 15.2 m ²	②好氧處理程序與厭氧	高處理程序最終產物都有 C	O ₂ 及H ₂ O			
【3】66.為確保混凝劑與懸浮固體發生最大之接觸效	果,因此混凝劑與助凝	劑在水中須快速分散以利大膠羽顆粒產	③好氧處理程序較厭氧	氢處理程序可處理的 COD 釘	負荷高			
生。這種混合現象不受下列哪項因子影響?			④厭氧處理通常做為類					
①分子擴散(perikinetic motion)	②渦流擴散(eddy diffu					及臭味,尤其對水中有機污染物去除率		
③表面擴散(surface diffusion)	④非均匀流動(nonunif	,	高達 90%以上,對於活性碳吸附法異常現象與對策,下列敘述何者錯誤? ①處理之水質若濁度過高,可能觀察到會有水頭損失過大狀況					
【2】67.過濾是水處理方式一種保障,尤其與化學混	凝又應結合任一起時,	能任具淘度狀况下以低流速產生清淨水			損矢過大狀況			
源。其去除濁度機制,下列何者錯誤? ①篩除 ②吸附	③沉澱	④攔截	②活性碳吸附容量低,	,希時吊再生使用 有堵塞且失去其效用,將造	式 COD 土陸玄際低			
(2】68.若以氯當作水質消毒劑,其在水中會迅速發				自省基丘大云兵双用,将起 疑及沉澱方式吸附水中物質	• • • • • • • • • • • • • • • • • • • •	亲觸床		
$Cl_2 + H_2O \leftrightarrows HOCl + H^+ + Cl^- \qquad k_1 = 4.5 \text{ x } 10$				聚會很快與氨氮反應成氯胺,方程式如				
$HOC1 \leftrightarrows H^+ + OC1$ $k_2 = 2.7 \times 10^{-1}$ $k_2 = 2.7 \times 10^{-1}$			下:	/// 每// 12// 一位// 1	口户交收门口口的一个家庭	汉自[K[八六安(英()文//心/)久录()]文 / 万/王上()入口		
假設進流水質之酸鹼度為 5.1 時,則此時自由		ole Chlorine)主要分子為何?	$NH_3 + HOCl \rightarrow NH$	$H_2Cl + H_2O (1)$				
① Cl ₂ ② HOCl	③ Cl⁻	⊕ OCl⁻	$NH_2Cl + HOCl \rightarrow l$					
【4】69.過濾的目的為分離水體懸浮固體,以澄清水	質。一般澄清過濾時,	濾材對於懸浮固體粒子的去除機制,不	$NHCl_2 + HOCl \rightarrow l$	$NCl_3 + H_2O$ (3)				
包含下列哪個作用?			對於結合有效餘氯之紀	改述,下列何者錯誤?				
①粒子與濾料間之衝擊(impaction)作用	②粒子與濾料間之凝聚	器(adhesion)作用	①三種氯胺的分佈與水	-	②結合有效餘氯殺菌能	E 力遠大於自由餘氯		
③粒子於濾料間隙間的阻留(screening)作用	④粒子被附著於濾材表	長面之有機物所分解	③ NH ₂ Cl、NHCl ₂ 及 N		/// よしたお A A トラ トラ ・ ト ・ ト ・ ト ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	KILL PUT		
			④於打點加氯法中,當	當加氯超過折點,則自此點	後的總餘氯重甲,氯胺原	竹台比例極小		